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Abstract 
High concentration of aluminum (Al) ion solubilized in acid soils restrict plant growth. The 
mechanisms of plant adaptation to Al stress can be separated into Al exclusion and internal Al 
inactivation. In general, plant species that have developed mechanisms of the former type are called 
“Al excluders”, and those that have developed mechanisms of the latter type are called “Al 
accumulators”. Aluminium accumulators are widely distributed in acid soils, particularly in humid 
tropics. In addition to their geographical distribution, Al accumulators show a wide phylogenetic 
distribution in plant. Here I discussed physiological characteristics of Al accumulation among different 
Al accumulator species within various vascular plant taxa. Results from the literature suggested that 
variation of the Al detoxification and accumulation mechanisms in the tissue of Al accumulators 
seemed to be small in vascular plant. 
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Introduction 
Acid soils occupy approximately 30% of the world’s 

ice-free land area (von Uexküll and Mutert 1995). It is 
well known that high Al ion concentration in soil 
solutions is the most important factor in restricting 
plant growth in acid soils. In non-acid soils, the 
naturally occurring Al forms are usually stable and non-
toxic, but soluble Al ions become available in soil 
solutions when pH is below 5.5. In most plant species, 
the Al toxicity is a problem in roots. It has been 
reported that Al increases plasma membrane 
permeability by binding phospholipids (Matsumoto et 
al. 1992) and membrane proteins (Caldwell 1989), or 
by lipid peroxidation (Ikegawa et al. 2000). Al also 
increases cell wall rigidity (Wehr et al. 2004) by 
binding pectin (Horst et al. 2010) and hemicelluloses 
(Yang et al. 2011). Generally, the mechanisms of Al 
tolerance can be separated into Al exclusion and 
internal Al inactivation. Most plant species have 
developed the ability to exclude Al from roots as a 
method of adapting to acid soils (Kochian et al. 2015). 
The most well-known mechanism of Al exclusion is the 
exudation of organic acid anions from the root. Some 
organic acid anions can make stable complex with Al, 
resulting in Al inactivation in rhizosphere. The 
efficiency of Al-inactivation is dependent on the 
chelating ability of the secreted organic acid anions, 
which can be corresponded to their stability constants 
of Al-organic acid anion chelate. The major organic 
acids released from roots for Al detoxification 
(exclusion) are citrate (e.g. in maize (Pellet et al. 1995), 
Cassia tora (Ma et al. 1997), soybean (Yang et al. 
2000), snapbean (Miyasaka et al. 1991), rye (Li et al. 
2000), triticale (Ma et al. 2000)), malate (e.g. in wheat 
(Delhaize et al. 1993), rye (Li et al. 2000), triticale (Ma 
et al. 2000)) and oxalate (e.g. in buckwheat (Ma et al. 

1997), taro (Ma and Miyasaka 1998)). It has been 
suggested that the exudation of organic acid anions is 
controlled by anion transporter. Some anion channel 
inhibitors inhibited oxalate secretion (and decreased the 
Al tolerance) in buckwheat (Zheng et al. 1998). Sasaki 
et al. (2004) isolated a novel gene, ALMT1, which 
encodes an Al-activated malate transporter in wheat. 
Homologues of wheat ALMT1 were isolated in several 
plant species, such as Arabidopsis thaliana (Hoekenga 
et al. 2006) and Brassica napus (Ligaba et al. 2006). 

Thus, the exudation of organic acid anions is a key 
mechanism of Al tolerance in plant. However, it is also 
known that Al tolerance in plant cannot be explained 
only by the exudation of organic acid anions. When 
comparing Al tolerance and organic acid anion (citrate) 
exudation under Al stress in 7 different plant species, 
no correlation was observed between these two 
parameters (Wagatsuma et al. 2001). For example, rice 
has relatively higher tolerance to Al but does not exude 
significant amounts of organic acid anions from roots 
for Al tolerance (Wagatsuma et al. 2001). There are 
many reports studying Al tolerance mechanisms in rice. 
Watanabe and Okada (2005) suggested that the 
differences in Al tolerance between japonica (tolerant) 
and indica (sensitive) varieties can be explained by 
different electrochemical characteristics of root-tip cells. 
Ma et al. (2002) mapped quantitative trait loci (QTLs) 
for Al tolerance mapped in a population of 183 
backcross inbred lines derived from a cross of 
Koshihikari (tolerant) and Kasalath (sensitive). In their 
study, three putative QTLs controlling Al tolerance 
were detected on chromosomes 1, 2 and 6. Khan et al. 
(2009) reported that the difference in lipid composition 
of plasma membrane could explain the difference in Al 
tolerance in rice. As explained above, many researchers 
are studying the mechanisms of Al tolerance in rice but 
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definite mechanism is still unclear. 
 

Aluminum accumulator plants 
Another important mechanism of Al tolerance is the 

internal Al tolerance. Generally, the most part of Al 
absorbed by roots cannot be transported to shoots. In 
some specific plant species adapted to acid soils, 
however, considerably large amounts of Al are 
transported and accumulated in shoots. Such plant 
species that highly develop the internal Al tolerance are 
often called “Al accumulators”, and are mostly woody 
plants. Such accumulator plants are also found in other 
toxic elements, including heavy metals (Memon and 
Schröder 2009), which may be a common adaptation 
mechanism of plants to toxic elements. Heavy metal 
accumulator plants have also been used in 
phytoremediation to remove toxic elements from the 
contaminated soil (Memon and Schröder 2009). 

Then, how do Al accumulators resist such a high 
tissue concentration of Al? It has been shown in some 
accumulator species that organic or inorganic ligands 
form stable complexes with Al in the tissues, like in the 
rhizosphere of Al excluders exuding organic acid 
ligands from the roots. For example, Melastoma 
malabathricum (Figure 1), which is a woody plant 
growing in acid soils in Southeast Asia, accumulates 
more than 10,000 mg Al kg-1 DW in the leaves as 
monomeric Al and Al-oxalate complexes (Watanabe et 
al. 1998). Similarly, the main Al-form in the leaves of 
Hydrangea macrophylla was reported to be an Al-
citrate complex (Ma et al. 1997). Inorganic ligand for 
Al in tissues of Al accumulator species was also 
suggested. Faramea marginata, a woody species 
growing on mainly acid soils, is not only a strong Al 
accumulator, but also a Si accumulator. The form of Si 
in F. marginata is different from that in rice, a typical Si 
accumulator, and is likely to make complex with Al 
(Britez et al. 2002). 

Why can they accumulate such high concentrations 
of Al in their tissues (shoots)? In strongly acid soils, 
rhizospheric Al activities are extremely high. In case of 
Al excluders, large amounts of organic acid anions, 
synthesized from photosynthate, are needed to 
inactivate rhizospheric Al in such soils, resulting in 
increase of carbon loss. Moreover, organic acid anions 
would diffuse in soil solution, and be decomposed by 
soil microorganisms. By contrast, Al accumulators can 
concentrate organic acid anions on inside plant. This is 
energetically-favored system to survive in strongly acid 
soils. Besides this, some Al accumulators utilize Al for 
their growth. Although M. malabathricum is a 
dominant species in some strongly acid soils with high 
concentration of both Al and iron (Fe) (e.g. acid sulfate 
soils), it is very sensitive to Fe toxicity. Fe is an 
essential micronutrient for plant, but excess Fe often 
induces an excess of reactive oxygen species. Watanabe 
et al. (2006) showed that Al absorption competitively 
decreases Fe absorption in M. malabathricum. This 
decrease of Fe accumulation allows M. malabathricum 
to distribute as a dominant plant species in strongly 
acidic soils. 
 

Phylogenetic distribution of aluminum accumulator 
plants 

Plant species with Al levels of at least 1000 mg kg-1 
in their leaves or shoots are defined as Al accumulators 
(Chenery 1948). The phylogenetic distribution of Al 
accumulator plants has been studied by several 
researchers. Jansen et al. (2002) comprehensively 
analyzed the data in the literature, and applied recent 
molecular phylogenies to evaluate the systematic and 
phylogenetic implications of the Al-hyperaccumulation 
characteristic. They found that Al accumulators are 
mainly eudicots, and are particularly common in basal, 
woody branches of fairly advanced groups, such as 
rosids and asterids, but the characteristic has probably 
been lost in more derived, herbaceous taxa (Jansen et al. 
2002). Furthermore, Schmitt et al. (2017) showed that 
Al accumulators are also widely distributed in 
pteridophytes, and that Al hyperaccumulation is much 
more common in pteridophytes than in angiosperms. 
 
Phylogenetic variation of aluminum forms in the 
tissue of aluminum accumulator species 

Aluminium forms in the tissue of Al accumulator 
plants have been reported in various studies (Figure 2). 
It has been reported that oxalate is the most common 
ligand for a part of Al in the tissue of Al accumulator 
species in various clades of angiosperms (Ma et al. 
1997; Maejima et al. 2014; Morita et al. 2006; 
Watanabe et al. 1998), whereas a high concentration of 
non-chelated monomeric Al was also detected in the 
leaves of woody eudicots (Maejima et al. 2014; 
Watanabe et al. 1998). Oxalate has often been regarded 
as an end product that is not further metabolized or only 
slowly metabolized. Whereas various functions of 
oxalate have been suggested, the most common 
function is the regulation of Ca levels and protection 
against herbivory by forming Ca oxalate crystals 
(Franceschi and Nakata, 2005). Moreover, oxalate itself 
is toxic in a soluble form. Therefore, from the other 
perspective, it is possible that excess oxalate is 
detoxified by binding with Ca in plant. Detoxification 
of Al by oxalate in plant might be derived from Ca 
oxalate crystal formation. Furthermore, as another 
ligand for Al, silicon (Si) was also suggested to 
contribute in some Al accumulator species (Britez et al. 

Figure 1. Melastoma malabathricum. 
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2002; Malta et al. 2016), including Dicranopteris 
linearis, a fern (Liu et al. 2019). These results imply 
that internal Al detoxification mechanisms by making 
Al-oxalate or Al-Si complexes in plant tissue may be 
very primitive and common in vascular plants. 
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